The Intersection Theorems for New S-KKM Maps and Its Applications

Lin Yen-Cherng General Education Center China Medical University, Taichung 404, Taiwan

Abstract

In this paper, we shall discuss the intersection theorems on G-convex spa ce for new S-KKM maps. We also establish the Ky Fan type matching theor ems. As applications, we discuss the existence results of fixed points for suc h maps.

Keywords : Convex spaces, Generalized convex spaces, G-convex set, Γ -finite closed, New S-KKM map, New G-KKM map, Matching theorem, Intersection theorems, Fixed points.

1. Introduction and Preliminaries

A set-valued map $F: X \to 2^{Y}$ is a mapping from a set X into the power set 2^{Y} of Y, that is, a mapping with the values $F(x) \subset Y$ for each x in X. For $A \subset X$, $F(A) = \bigcup_{x \in A} F(x)$. For any $B \subset Y$, the inverse of B under F is defined by $F^{-1}(B) = \{x \in X :$ $F(x) \cap B \neq \phi\}$. The inverse of $F: X \to 2^{Y}$ is the map $F^{-1}: Y \to 2^{X}$ defined by $x \in F^{1}(y)$ if and only if $y \in F(x)$. Given two maps $F : X \rightarrow 2^{Y}$ and $G : Y \rightarrow 2^{Z}$, the composite $GF : X \rightarrow 2^{Z}$ is defined by (GF)(x) = G(F(x)) for all $x \in X$.

In a vector space E, a convex hull of its finite subset will be called a polytope. For topological spaces X, A subset W of X is called compactly closed (compactly open, resp.) if, for any compact set $K \subset X$, $W \cap K$ is closed (open, resp.) in K.

A convex space [3] X is a nonempty convex set (in a vector space) with any topology that induces the Euclidean topology on the convex hulls of its finite sets. We shall denote by <X> the family of all non-empty finite subsets of a set X. If X is a subset of a vector space, co(X) denotes the convex hull of X. For a set A, let IAI denote the cardinality of A. Let Δ^n denote the standard n-simplex co{e₀, . . ., e_n}, where e_i is the (i+1)th unit vector in Rⁿ⁺¹.

A generalized convex space or G-convex space (X, D; Γ) [4] consists of a topological space X, a non-empty subset D of X and a map $\Gamma : \langle D \rangle \rightarrow 2^x$ with non-empty values such that

- (1) for each A, B \in $\langle D \rangle$, A \subset B implies $\Gamma(A) \subset \Gamma(B)$; and
- (2) for each $A \in \langle D \rangle$ with |A| = n+1, there exists a continuous function φ_A : $\Delta^n \to \Gamma(A)$ such that $J \in \langle A \rangle$ implies $\varphi_A(\Delta^{U-1}) \subset \Gamma(J)$, where Δ^{U-1} denotes the face of Δ^n corresponding to $J \in \langle A \rangle$.

We may write $\Gamma(A) = \Gamma_A$, for each $A \in \langle D \rangle$. If X=D, then we may write (X, X; Γ)=(X, Γ). For a G-convex space (X, D; Γ), a subset C of X is said to be G-convex if for each $A \in \langle D \rangle$, $A \subset C$ implies $\Gamma_A \subset C$.

Let P and Q be two non-empty sets in a G-convex space (X, D; Γ), we say that P is G-convex relative to Q if for each A \in < D > with A \subset Q, we have $\Gamma_A \subset$ P. We note that if Q is non-empty and P is G-convex relative to Q, then P is automatically

The Intersection Theorems for New S-KKM Maps and Its Applications 183

non-empty.

Let X be a nonempty set, $(Y; \Gamma)$ be a G-convex space. The mapping T: X $\rightarrow 2^{Y}$ is a generalized S-KKM map [2] if for each N $\in \langle X \rangle$, G-co(S(N)) \subset T(N). The mapping T: X $\rightarrow 2^{Y}$ is a generalized G-KKM map [5] if for each h N $\in \langle X \rangle$, there is a function s: X \rightarrow Y such that G-co(s(N)) \subset T(N).

Now, we begin to define some new set-valued mappings as follows.

Definition 1. Let X be a nonempty set, (Y, D; Γ) be a G-convex space, S: X $\rightarrow 2^{D}$ with nonempty values, T: X $\rightarrow 2^{Y}$. We said that T is a new S-KKM map if and only if for each N $\in \langle X \rangle$, T(N) is G-convex relative to S(N).

Definition 2. Let X be a nonempty set, (Y, D; Γ) be a G-convex space, T: X $\rightarrow 2^{Y}$. We said that T is a new G-KKM map if and only if for each N $\in \langle X \rangle$, there is a function f: N \rightarrow D such that $\Gamma_{fM} \subset T(M)$ for all M $\in \langle N \rangle$.

From the definition, T is a generalized G-KKM map \Rightarrow T is a generalized S-KKM map \Rightarrow T is a new S-KKM map \Rightarrow T is a new G-KKM map. But converse is not true in general. The following proposition will explain why the last implication hold.

Proposition 1. Let X be a nonempty set, (Y, D; Γ) be a G-convex space, S: X $\rightarrow 2^{D}$ with nonempty values, T : X $\rightarrow 2^{Y}$. If T is a new S-KKM map, then T is a new G-KKM map.

Proof. For each $N \in \langle X \rangle$. For any $x \in N$, we choose a $y_x \in S(x)$ and define $f: N \rightarrow D$ by $f(x)=y_x$ for all $x \in N$. Then $f(N) \in \langle S(N) \rangle$. Since T is a new S-KKM map, $\Gamma_{f(N)} \subset T(N)$. Hence T is a new G-KKM map.

Definition 3. (Y, D; Γ) be a G-convex space and $L \subset Y$, L is said to be Γ -finite closed if for each $A \in \langle D \rangle$, $L \cap \Gamma_A$ is closed in Γ_A .

2. The Intersection Theorems

We first state the relation between the finite intersection property and the new G-KKM maps.

Proposition 2. Let X be a nonempty set, (Y, D; Γ) be a G-convex space, T: X $\rightarrow 2^{Y}$ a new G-KKM map with Γ -finite closed values. Then the family { T(x) : x \in X } has the finite intersection property.

Proof. Let $N \in \langle X \rangle$, since T is an new G-KKM map, there is a function $f: N \to D$ such that $\Gamma_{f(N)} \subset T(N)$. Let $L=\Gamma_{f(N)}$. Then there exists a continuous function φ : $\Delta^{If(N)+1} \to L$ such that, for all $M \subset N$, $\varphi(\Delta^{If(M)+1}) \subset \Gamma_{f(M)} \subset T(M) \cap L$. Hence $\Delta^{If(M)+1} \subset \varphi^{-1}(T(M) \cap L) = \bigcup_{x \in M} \varphi^{-1}(T(x) \cap L)$. Note that each $T(x) \cap L$ is closed in L by assumption, so $\varphi^{-1}(T(x) \cap L)$ is closed in $\Delta^{If(N)+1}$. By the classical KKM theorem, we have $\bigcap_{x \in N} \varphi^{-1}(T(x) \cap L) \neq \phi$ and $\bigcap_{x \in N} (T(x) \cap L) \neq \phi$. Hence the family $\{T(x) : x \in X\}$ has the finite intersection property.

Proposition 3. Let X be a nonempty set, $(Y; \Gamma)$ be a G-convex space with $\Gamma_{\{y\}}=\{y\}$ for each $y \in Y, T : X \rightarrow 2^{Y}$. If the family $\{T(x) : x \in X\}$ has the finite intersection property, then T is a new G-KKM map.

Proof. Suppose that the family { $T(x) : x \in X$ } has the finite intersection property. Then, for each $N \in \langle X \rangle$, we may choose $y^* \in \bigcap_{x \in N} Tx$. Define $f : N \to Y$ by $f(x)=y^*$ for all $x \in N$. Then $\Gamma_{f(N)} = \Gamma_{(y^*)} = \{y^*\} \subset \bigcap_{x \in N} T(x) \subset T(N)$. Therefore, T is a new G-KKM map. **Theorem 1.** Let X be a nonempty set, $(Y, D; \Gamma)$ be a G-convex space such that, for each $A \in \langle D \rangle$, Γ_A is compact. Suppose that $T: X \rightarrow 2^Y$ with compactly closed values and suppose that there exists a $L \in \langle X \rangle$ such that $\bigcap_{x \in L} T(z)$ is compact.

- (1) If T is a new G-KKM map, then $\bigcap_{x \in X} T(x) \neq \phi$.
- (2) If $\bigcap_{x \in X} T(x) \neq \phi$ and $\Gamma \{y\}=\{y\}$ for each $y \in Y$, then T is a new G-KKM map.

Proof. (1) Since T(x) is compactly closed, T(x) has Γ -finite closed values. If T is a new G-KKM map, by Proposition 2, the family { T(x) : $x \in X$ } has the finite intersection property. Then the family { T(x) $\cap (\bigcap_{z \in L} T(z)) : x \in X$ } also has the finite intersection property. Since $\bigcap_{z \in L} T(z)$ is compact and T(x) $\cap (\bigcap_{z \in L} T(z))$ is closed in $\bigcap_{z \in L} T(z)$, we have $\bigcap_{x \in X} T(x) \supset \bigcap_{x \in X} (T(x) \cap (\bigcap_{z \in L} T(z))) \neq \phi$.

(2) Suppose that $\bigcap_{x \in X} T(x) \neq \phi$, then the family { $T(x) : x \in X$ } has the finite intersection property. Since $\Gamma \{y\}=\{y\}$, by Proposition 3, T is a new G-KKM map.

Next, we shall discuss the global intersection property for the new S-KKM map.

Theorem 2. Let X be a nonempty set, (Y, D; Γ) be a G-convex space, T : X $\rightarrow 2^{Y}$, S : X $\rightarrow 2^{D}$. Suppose that

- (1) for each $x \in X$, T(x) is compactly closed in Y,
- (2) T is a new S-KKM map,
- (3) $cl_{Y}(S(X))$ is a compact G-convex set.
- Then $cl_{Y}(S(X)) \cap (\bigcap_{x \in X} T(x)) \neq \phi$.

Proof. Since T is a new S-KKM map, for each $N \in \langle X \rangle$ and each $A \in \langle S(N) \rangle$, we have $\Gamma_A \subset T(N)$. Since $cl_Y(S(X))$ is a G-convex set and $\Gamma_A \subset cl_Y(S(X))$, $\Gamma_A \subset cl_Y(S(X)) \cap T(N) = \bigcup_{x \in N} (T(x) \cap cl_Y(S(X))) = \bigcup_{x \in N} F(x) = F(N)$, where $F(x) = T(x) \cap cl_Y(S(X))$. Hence F is also a new S-KKM map. By the compact closedness of T(x) and the compactness of $cl_Y(S(X))$, F(x) is closed, hence is Γ -finite closed. By Proposition 2, { $F(x) : x \in X$ } is a family of Γ -finite closed sets with finite intersection property. Since $cl_Y(S(X))$ is compact, $\bigcap_{x \in X} F(x) \neq \phi$. Therefore, cl_Y $(\mathbf{S}(\mathbf{X})) \ \cap \ (\cap_{x \in X} \mathbf{T}(\mathbf{x})) \neq \boldsymbol{\phi} \ .$

We can deduce the following corollary directly from Theorem 2.

Corollary 1. Let X be a nonempty compact set, $(Y, D; \Gamma)$ be a G-convex space, $T : X \rightarrow 2^{Y}, S : X \rightarrow 2^{D}$. Suppose that

(1) for each $x \in X$, T(x) is compactly closed in Y,

(2) T is a new S-KKM map,

(3) S is upper semi-continuous with compact values and $cl_Y(S(X))$ is G-convex. Then $cl_Y(S(X)) \cap (\bigcap_{x \in X} T(x)) \neq \phi$.

Proof. Since $S : X \to 2^{D}$ is upper semi-continuous with compact values and X is compact, S(X) is compact and hence $cl_Y(S(X))$ is compact. By Theorem 2, $cl_Y(S(X)) \cap (\bigcap_{x \in X} T(x)) \neq \phi$.

Theorem 3. Let X be a nonempty set in a Hausdorff topological vector space, (Y, D; Γ) be a G-convex space, K be a compact subset of Y, T : X \rightarrow 2^Y, S : X \rightarrow 2^D. Suppose that

- (1) for each $x \in X$, T(x) is compactly closed in Y,
- (2) T is a new S-KKM map,
- (3) for each compact convex subset C of X, cl_Y (S(C)) is a compact G-convex subset of Y.
- (4) for each $N \in \langle X \rangle$, there exists a compact convex subset L_N of X containing N such that $cl_Y(S(L_N)) \cap (\bigcap_{x \in L_N} T(x)) \subset K$.

Then $cl_{Y}(S(X)) \cap K \cap (\bigcap_{x \in X} T(x)) \neq \phi$.

Proof. Suppose that $cl_Y(S(X)) \cap K \cap (\bigcap_{x \in X} T(x) = \phi$. Let $F(x)=Y \setminus T(x)$ for all $x \in X$. Then $cl_Y(S(X)) \cap K \subset F(X)$. Since K is compact, there exists a $N \in \langle X \rangle$ such that $cl_Y(S(X)) \cap K \subset F(N)$. We choose L_N as in (4). Then $cl_Y(S(L_N)) \setminus K \subset$

 $F(L_N)$. Thus,

$$\operatorname{cl}_{\mathrm{Y}}(\mathrm{S}(\mathrm{L}_{\mathrm{N}})) \subset \mathrm{F}(\mathrm{L}_{\mathrm{N}}).$$
 (1.1)

Since L_N is a compact convex subset in X, $cl_Y(S(L_N))$ is compact G-convex in Y from (1). Define H: $L_N \rightarrow cl_Y(S(L_N))$ by H(x)=T(x) $\cap cl_Y(S(L_N))$ for all $x \in X$. By (2), the map H has closed values in $cl_Y(S(L_N))$. For each $M \in \langle X \rangle$, by (3), for each $A \in \langle S(M) \rangle$, $\Gamma_A \subset T(M)$. Since $cl_Y(S(L_N))$ is G-convex, $\Gamma_A \subset cl_Y(S(L_N))$. Hence $\Gamma_A \subset T(M) \cap cl_Y(S(L_N))$ and H is a new S-KKM map. By Theorem 2, $\bigcap_{x \in L_N} H(x) \neq \phi$. That is, $cl_Y(S(L_N)) \cap (\bigcap_{x \in L_N} T(x)) \neq \phi$. Then $cl_Y(S(L_N)) \not\subset F(L_N)$ which is a contradiction to (1.1). Hence the result follows.

If Y is a convex space and $S(x) = \{ s(x) \}$ for each $x \in X$, where s is a continuous affine mapping, then, for each compact convex subset C of X, S(C) is compact convex subset of Y and so is cl_Y (S(C)). By Theorem 3, we can get the following corollary.

Corollary 2. Let X be a nonempty convex set in a Hausdorff topological vector space, Y be a convex space, K be a compact subset of Y, T : $X \rightarrow 2^{Y}$, s : $X \rightarrow Y$ be a continuous affine mapping and $S(x) = \{ s(x) \}$ for all $x \in X$. Suppose that

- (1) for each $x \in X$, T(x) is compactly closed in Y,
- (2) for each $M \in \langle X \rangle$, co(S(M)) \subset T(M),
- (3) for each $N \in \langle X \rangle$, there exists a compact convex subset L_N of X containing N such that $cl_Y(S(L_N)) \cap (\bigcap_{x \in L_N} T(x)) \subset K$.

Then $cl_{Y}(S(X)) \cap K \cap (\cap_{x \in X} T(x)) \neq \phi$.

Remark 1. If we replace the condition (4) in Theorem 3 and the condition (3) in Corollary 2 with the following condition, the conclusions still hold:

there is a compact convex subset X_0 of X such that $cl_Y(S(X)) \cap (\bigcap_{x \in X_0} T(x)) \subset K$.

Use another condition different from Theorem 3, we have the following global

intersection theorem.

- **Theorem 4.** Let X be a nonempty set, (Y; Γ) be a G-convex space, S, T: X $\rightarrow 2^{Y}$ such that
- (1) T is a new S-KKM map,
- (2) T : X \rightarrow 2^Y has compactly closed values in Y,
- (3) there exists a compact subset K of Y such that for each N \in < X >, there exists a compact G-convex subset L_N of Y with S⁻¹(L_N) containing N such that

 $\bigcap_{x \in S^{-1}(L_N)} \mathbf{T}(\mathbf{x}) \subset \mathbf{K}.$

Then $K \cap (\bigcap_{x \in X} T(x)) \neq \phi$.

Proof. By using apagoge and the Brouwer's fixed point theorem, one can easy to deduce the whole intersection is nonempty.

Remark 2. Theorem 4 contains the Theorem 1 in [7].

3. The Existence Results of Fixed Points

We first establish the following matching theorems to deduce the existence result of fixed points.

Theorem 5. Let X be a nonempty set in a Hausdorff topological vector space, (Y, Γ) be a G-convex space, K be a compact subset of Y, G : X $\rightarrow 2^{Y}$ be a surjection with compactly open values in Y, S, T : X $\rightarrow 2^{Y}$. Suppose that

- for each compact convex subset C of X, cly (S(C)) is a compact G-convex subset of Y.
- (2) for each $A \in (S(X))$ and each $y \in \Gamma_A$, $F^1(y)$ is a convex subset of X,

(3) for each $x \in X$, $G(x) \subset F(x)$,

(4) there exists a compact convex subset X_0 of X such that $cl_Y(S(X)) \setminus K \subset G(X_0)$.

Then there exist $N \in \langle X \rangle$ and $A \in \langle S(N) \rangle$ such that $\Gamma_A \cap (\bigcap_{x \in co(N)} F(x)) \neq \phi$.

Proof. From the surjectivity of G and (3), we have $F^{-1}(y) \neq \phi$ for each $A \in \langle S(X) \rangle$ and each $y \in \Gamma_A$. Let $T(x)=Y \setminus G(x)$ for all $x \in X$. Then T has compactly closed values. By (4), $cl_Y(S(X)) \cap (\bigcap_{x \in X_0} T(x)) \subset K$. Now, we discuss two cases as follows.

Case (a): If $cl_Y(S(X)) \cap (\bigcap_{x \in X_0} T(x)) = \phi$. Then $cl_Y(S(X_0)) \cap (\bigcap_{x \in X_0} T(x)) = \phi$. By Theorem 2, T is not a new S-KKM map. Then there exist $N \in \langle X \rangle$ and $A \in \langle S(N) \rangle$ such that $\Gamma_A \not\subset T(N)$. This means that there is a $y \in \Gamma_A$ such that $y \notin T(N)=Y \setminus (\bigcap_{x \in N} G(x))$. Then $y \in \bigcap_{x \in N} G(x) \subset \bigcap_{x \in N} F(x)$, by (3). Thus $N \subset F^1(y)$. From (2), $y \in \bigcap_{x \in co(N)} F(x)$. That is, $\Gamma_A \cap (\bigcap_{x \in co(N)} F(x)) \neq \phi$.

Case (b): If $cl_Y(S(X)) \cap (\bigcap_{x \in X_0} T(x)) \neq \phi$. We claim that T is not a new S-KKM map. Suppose T is a new S-KKM map. Then, by Theorem 3, $cl_Y(S(X)) \cap K \cap (\bigcap_{x \in X} T(x)) \neq \phi$. Then $\bigcap_{x \in X} T(x) \neq \phi$. Therefore, $G(X) \neq Y$, which contradicts the surjectivity of G. Then, as in the proof of Case (a), we have the conclusion.

Theorem 6. Let $(X; \Gamma)$ be a G-convex space, f, g, $S : X \rightarrow 2^x$ be two set-valued maps such that

- (1) for each $x \in X$, f(x) is nonempty and G-convex subset of X,
- (2) g has compactly open values and f'(y) contains some g(y) for each $y \in X$,
- (3) there is a compact subset K of X such that for each $N \in \langle X \rangle$, there is a compact G-convex subset L_N of X with $S^{-1}(L_N)$ containing N such that

$$\bigcap_{x \in S^{-1}(L_N)} g^{c}(x) \subset K, \text{ and}$$

(4) $\bigcup_{x \in X} g(x) = X.$

Then there are $I \in \langle X \rangle$ and $B \in \langle S(I) \rangle$ such that $\Gamma_B \cap \bigcap_{x \in \Gamma_I} f^1(x) \neq \phi$.

Proof. Define $T : X \to 2^x$ by $T(x) = g^c(x)$. From (4), T^c is a surjective map. Hence $\bigcap_{x \in X} T(x) = \phi$. By Theorem 4, T is not a new S-KKM map. Then there are $I \in \langle X \rangle$ and $B \in \langle S(I) \rangle$ such that $\Gamma_B \not\subset \bigcup_{x \in I} T(x)$. Thus there is a $z \in \Gamma_B$ such that $z \notin \bigcup_{x \in I} T(x)$ or

 $z \in \bigcap_{x \in I} T^{c}(x)$. This implies that $I \subset g^{-1}(z) \subset f(z)$. Since f(z) is G-convex, $\Gamma_{I} \subset f(z)$ or

 $z \in \bigcap_{x \in \Gamma_I} f^{1}(x)$. Therefore, $\Gamma_B \cap \bigcap_{x \in \Gamma_I} f^{1}(x) \neq \phi$.

Corollary 3. Let X be a compact Hausdorff convex space, $G : X \rightarrow 2^{x}$ be a surjection with compactly open values in X, S, T : $X \rightarrow 2^{x}$. Suppose that

(1) for each compact convex subset C of X, $cl_x(S(C))$ is a compact convex subset of X.

(2) for each $y \in co(S(X))$, F'(y) is a convex subset of X,

(3) for each $x \in X$, $G(x) \subset F(x)$,

Then there exist $N \in \langle X \rangle$ and $A \in \langle S(N) \rangle$ such that $co(A) \cap (\bigcap_{x \in co(N)} F(x)) \neq \phi$.

Proof. Since X is compact and G is surjective with compactly open values, there exists an $N \in \langle X \rangle$ such that $X \subset G(N)$. Hence $cl_{Y}S((X)) \subset X \subset G(N) \subset G(co(N))$. If we take $X_0=co(N)$ and $K=\phi$, then the condition (4) of Theorem 4 holds. Applying Theorem 4, we have the conclusion.

If we take $S(x) = \{x\}$ for each $x \in X$ and X=Y is a convex space in Theorem 4, then we have the following fixed point theorem.

Corollary 4. Let X be a nonempty Hausdorff convex space, K be a compact subset of X, G: $X \rightarrow 2^x$ be a surjection with compactly open values in X, F: $X \rightarrow 2^x$. Suppose that (1) for each $y \in X$, F¹(y) is a convex subset of X,

E.P.S

(2) for each $x \in X$, $G(x) \subset F(x)$,

(3) there exists a compact convex subset X₀ of X such that $X \setminus K \subset G(X_0)$. Then there exists an $N \in \langle X \rangle$ such that $co(N) \cap (\bigcap_{x \in co(N)} F(x)) \neq \phi$. Hence, there exists a $\overline{y} \in co(N)$ such that $\overline{y} \in F(\overline{y})$.

Remark 3. Corollary 4 generalizes Tarafdar's fixed point theorem [6].

Corollary 5. Let X be a nonempty Hausdorff compact convex space, G: $X \rightarrow 2^{X}$ be a surjection with compactly open values in X, F: $X \rightarrow 2^{X}$. Suppose that (1) for each $y \in X$, $F^{1}(y)$ is a convex subset of X, (2) for each $x \in X$, $G(x) \subset F(x)$. Then there exists $N \in \langle X \rangle$ such that $co(N) \cap (\bigcap_{x \in co(N)} F(x)) \neq \phi$. In particular, there exists $\overline{y} \in co(N)$ such that $\overline{y} \in F(\overline{y})$. That is, F has a fixed point \overline{y} in co(N).

Remark 4. Corollary 5 generalizes Browder's fixed point theorem [1].

To the end, we can easy to derive the following fixed point theorem form Th eorem 6 with S is an identity map.

Corollary 6. Let $(X; \Gamma)$ be a G-convex space, f, g, $S : X \rightarrow 2^x$ be two set-valued maps such that

- (1) for each $x \in X$, f(x) is nonempty and G-convex subset of X,
- (2) g has compactly open values and f'(y) contains some g(y) for each $y \in X$,
- (3) there is a compact subset K of X such that for each $N \in \langle X \rangle$, there is a compact

G-convex subset L_N of X with L_N containing N such that $\bigcap_{x \in L_N} g^c(x) \subset K$, and

(4) $\bigcup_{x \in X} g(x) = X.$

Then there is a $B \in \langle X \rangle$ such that $\Gamma_B \cap \bigcap_{x \in \Gamma_B} f^1(x) \neq \phi$. In particular, f has a fixed point.

References

- F. E. Browder, 'On nonlinear monotone operators and convex sets in Banach space', Bull. Amer. Math. Sco. 71(1965), 780-785.
- [2] L. J. Lin and T. H. Chang, `S-KKM theorems, saddle points and minimax inequalities', Nonlinear Analysis, 34 (1998), 73-86.
- [3] S. Park, `Generalizations of Ky Fan's matching theorems and their applications', J. Math. Anal. Appl., 141 (1989), 164-176.
- [4] S. Park and H. Kim, `Admissible classes of multifunctions on generalized convex spaces', Proc. Coll. Natur. Sci. Seoul National University, 18 (1993), 1-21.
- [5] K. K. Tan, `G-KKM Theorem, minimax inequalities and saddle points', Nonlinear Anal. Theory, Meth. Appl., 30 (1997), 4151-4160.
- [6] E. Tarafdar, `A fixed theorem equivalent to the Fan-Knaster-Kuratowski-Mazwr kiewicz theorem', J. Math. Anal. Appl., 128 (1987), 475-479.
- [7] E. Tarafdar, 'Fixed point theorems in H-space and equilibrium points of abstract economics', J. Austral. Math. Soc. (Series A), 53 (1992), 252-260.

The Intersection Theorems for New S-KKM Maps and Its Applications 193

新 S-KKM 映射的全交集定理及其應用

林炎成

中國醫藥學院通識教育中心副教授

摘要

交集理論在非線性分析中,被廣泛討論及運用著。本篇文章裡,我們將在 G-凸空間裡討論新S-KKM映射的交集理論。我們也討論了樊璣型的配對理論, 並討論集合值映射之定點的存在性作為它的應用。

關鍵字:凸空間,G-凸空間,G-凸集,Γ-有限閉集,新S-KKM映射,新G-KKM 映射,配對理論,交集理論,定點。

